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Abstract
To understand the interactions between form and motion processing in object motion perception, we investigated whether extracted shape attributes can drive perceived motion.

In a new paradigm, identical dots were moved in and out along invisible spokes radiating from a center at regular angular intervals, in a manner consistent with the rotation of a dynamically and randomly distorting shape.  Rotation-direction discrimination as a function of the magnitude of non-rigidity, ruled out motion-perception models based on combining the shortest/slowest local motions, but was consistent with the use of rotation templates or global shape matching algorithms.  In addition, observers could discriminate rotation directions in the presence of extremely non-rigid but symmetric distortions up to 8 fps presentation rates, i.e. rotation speeds up to 2.5 rad/s.  In these stimuli, only the symmetric axis maintained continuous motion, and thus perception could not be explained by rotation templates or shape matching.
An optimal Bayesian observer was constructed to infer rotation direction.  Human rotation discrimination performance for arbitrary non-rigidities rivaled the shape-based optimal observer’s performance, and well exceeded it for symmetric non-rigid shapes.  Human observers are thus efficient at perceiving object motion by matching non-rigid shapes, and can improve their performance by extracting informative shape properties.

Introduction

Tumbling, rolling, swaying, stretching, leaping, spinning, flapping, dancing, kicking, bucking, jerking, sliding, gliding, tripping, shaking, wobbling, and twirling are just some of the many motions that human observers perceive and classify effortlessly, while maintaining object identity.  All visual motions are first parsed in the striate cortex by direction selective cells that signal local translations (Hubel and Weisel, 1968), making it a challenge to uncover the later neural combinations that recognize different classes of complex object motion.  For the last twenty-five years, understanding of object motion perception has been constrained by the convention that motion computation and shape analysis diverge after striate cortex into parallel neural pathways along the dorsal and ventral streams respectively (Ungerleider and Mishkin, 1982).  This division has been mirrored in computational analyses, where recent extensions of Tomasi and Kanade’s (1992) seminal work on 3-D shape-from-motion have simplified the extraction of non-rigid shapes by using solutions that employ either sets of basis shapes (Torresani, Hertzmann, and Bregler, 2008) or sets of basis trajectories (Akhter, Sheikh, Khan, and Kanade, 2008).  It is obvious, however, that the motion of any complex non-rigid object consists of shape transformations in systematic rather than arbitrary sequences.  Such constraints allow possible motion trajectories to be encoded in fairly low dimensional spaces (Troje, 2002). Models of non-rigidly articulated motion that aim to exploit such systematic progressions (Giese and Poggio, 2003) have postulated coordination between form representation and motion processing that goes beyond the simplistic conventional segregation. However, the more general class of non-articulated deforming objects has not received the same attention (Weiss and Adelson, 2000).  We present a new experimental method to study shape-motion interactions for arbitrarily deforming objects undergoing rotations. In particular, we examine whether properties abstracted from complex shapes can overcome shape deformations in inferring veridical motions.


The new method enabled us to tackle three fundamental issues in object motion perception.  First, we examined how disparate local motions are combined into a coherent global percept.  Since motion-sensing cells in striate cortex are generally cosine-tuned (Hawken, Parker and Lund, 1988), the motion of each local segment of an object activates neurons with preferred directions ranging over 180°, which leads to variations in local population responses across the object boundary.  In some cases such as translating plaids and the barber-pole illusion, where global motion is perceived as a single vector, combination rules like intersection-of-constraints (Movshon, Adelson, Gizzi and Newsome, 1985) or slowest/shortest-motion (Weiss, Simoncelli, and Adelson, 2002) can explain the percepts.  Rigid rotations require combination rules that are not as simple as for translations (Morrone et al, 1995; Caplovitz  and Tse, 2007), but may conform to regularization principles, such as minimal mapping (Ullman, 1979), smoothest motion (Hildreth, 1984), or motion coherence (Yuille and Grzywacz, 1988).  By adding different forms of dynamic shape distortions to rotation, we were able to tease apart the role that global representations play in combining local motion estimates into unitary percepts   
Second, we verified that shape representations can drive veridical motion perception without directional clues.  While shape-driven motion has been demonstrated in the absence of motion-energy signals for rotated faces (Ramachandran et al, 1998) and changes in geometrical shapes (Tse and Logothetis, 2002), in both of these cases the direction of motion was signaled by the end-shapes.  We used randomly generated dotted shapes with indeterminate orientations to prevent such influences on rotation perception.

Third, we tested whether properties abstracted from complex shapes can determine perceived motion.  Past work has shown that shape features, such as contour completion, relatability, convexity and closure, can determine motion grouping through surface segmentation (McDermott, Weiss, Adelson, 2001; McDermott and Adelson, 2004) or binding (Lorenceau and Alais, 2001), and neuroimaging has suggested that dorsal area V3A may extract features that are tracked in motion perception (Caplovitz and Tse, 2007).  However, feature extraction and global shape representations may play quite different roles in object motion perception.  Murray et al. (2002) and Fang et al. (2008) presented evidence that activation of the Lateral Occipital Complex (LOC) reduced activity in striate cortex during the percept of a grouped moving stimulus, but not during a non-rigid percept of the same stimulus as independently moving features.  To isolate the role of shape representation, we tested cases where tracking of shape contours or local features was uninformative, and perceived rotation could correspond only to rotation of a global shape property.


Four experiments were conducted to examine combination rules for local motion signals and the role of global shape properties in object motion perception. Experimental results were compared to a series of motion models incorporating local or global factors.  Finally, the efficiency of human perception was compared to an optimal shape-based Bayesian observer.

Experiment 1: Rotation detection in the presence of deformations

We sought to determine how specific local motions are chosen from the set of possible correspondences and integrated into global percepts.  In the new method, identical dots were synchronously moved in or out along invisible spokes radiating from a center, in a manner consistent with the rotation of a single shape (Figure 1A). The stimuli consisted of jagged shapes formed by taking 20 identical dots evenly spaced around a circle (angular gap (=18°) and independently varying each dot’s radial distance from the central fixation along its invisible spoke (Figure 1B).  For each trial, the variations were drawn from a Gaussian random distribution with zero mean and standard deviation the shape amplitude. 
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Figure 1A. Four representative trials from Experiment 1 at different dynamic jitter values.  Figure 1B demonstrates the generation technique for Experiment 1 stimuli.  Dot positions were initially set by the intersection of a circle and evenly spaced spokes.  Dot variation from the circle was determined by the shape amplitude  for the trial and the dynamic jitter added to each frame.
In Experiment 1, shape rotation between successive frames was set equal to the angle (, so the rotation of a circle centered at fixation would be invisible in this experiment. Further, on each rotation, positional noise was applied to each dot’s radial component, independently sampled from a random Gaussian distribution with zero mean and a pre-set standard deviation  the dynamic jitter for that trial (Figure 1B). Given the ambiguous nature of the rotation, a dot belonging to a random shape on frame i could have been perceived as moving to either of the adjacent spokes on frame i+1 or along the same spoke.  As illustrated in Figure 2, the distance between a dot at frame i was generally shorter to the dot on the same spoke at frame i+1 than it was to dots on adjacent spokes.  A ‘nearest neighbor’ rule is generally accepted as dominating the perceived path of apparent motion in cases where multiple locations compete for motion correspondence (e.g. Ullman, 1979).  In addition, the shortest spatial excursion between two frames is also the slowest motion, which has been suggested as a governing principle in motion perception (Weiss, Simoncelli, and Adelson, 2002).  To test whether local correspondence or coherent global rotation dominates motion perception in different configurations, we measured observers’ accuracy in determining the direction of rotation as a function of the standard deviation  of dynamic jitter. Since, a moving form is sampled through apertures, this paradigm may seem similar to multi-slit viewing (Anstis, 2005; Nishida, 2004; Kandil and Lappe, 2007), but it is different both in intent and design.  Instead of using familiar shapes to study form recognition, we used unfamiliar shapes that deform during rotation to create competition between different rules of motion combination.
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Figure 2. For successive stimuli in Experiment 1, the combined panel demonstrates the correspondence conflicts between local expansions or contractions vs. global rotation.

Methods

Observers:  Data were collected from six observers, including author EC and 5 naïve observers who were paid for their participation.  All had normal or corrected-to-normal vision, and were given prior training on the experimental task.
Apparatus:  Stimuli were generated with a Cambridge Research Systems ViSaGe controlled by a Dell GX620 and displayed on a Sony CRT monitor with 1024x768 pixels at 120 Hz refresh rate. The observer viewed the monitor at a distance of 100 cm in a dark room with head positioned on a chin rest.
Stimuli:  There were 10 sequential frames in each trial.   The 20 white dots subtended 6.6 min arc each, varied around a circular radius of 132 min arc, and were presented against a black background.  Shape amplitudes of  = 4 or 13 min arc were used to assign each dot a fixed radius for the entire trial. Dynamic jitter was calculated independently for each dot per frame with  set at 0, 2, 5.5, 10, 20 or 40 min arc for the trial.  To vary the difficulty of the task we used presentation rates of 3.5, 5.5, or 12.5, frames per second.  Rotation speed was proportional to presentation rate, since all trials consisted of the same number of frames.

Procedure:  For each trial, the observer used a key-press to choose between clockwise or counterclockwise global rotation. No feedback was provided. Trials were presented in blocks of 144.  Observers viewed 20 blocks spread out over two days.

Results and Modeling 

Figures 3A-3C display accuracy, averaged over 6 observers, plotted against  of the dynamic jitter, for the three presentation rates, respectively.  Accuracy decreased monotonically with increasing jitter.  High accuracy rates at low jitter show that global rotation was detected easily, despite competing with shorter inward and outward local motions.  This shows that the global percept is not formed by combining the most salient local motions.  Shapes of larger amplitudes were significantly more resistant to dynamic jitter (F(1,5) = 465.3, p < .0001), but not by a constant factor as reflected in the significant interaction between shape amplitude and jitter (F(5,5) =9.9, p<.001).   An accuracy of 75% can be used as the estimated threshold for radial jitter for each shape amplitude. Thresholds generally corresponded to values of dynamic jitter slightly greater than the shape amplitude, i.e. when the deformation of the trial shape from frame to frame was of the same order as the variations that distinguish the trial shape from a circle. This suggests that until the global rotation becomes incoherent, its percept dominates the shorter/slower local motions that indicate local expansions or contractions but do not form a coherent percept.  Presentation time did not affect accuracy for the less jagged shape, but accuracy increased for the large amplitude shape with increasing frame time, leading to a significant interaction between presentation time and shape amplitude (F(2,5) = 4.7, p<.05).  This could indicate that the greater accuracy in perceiving the rotation of the more jagged shape was due to form analysis, and that increased frame time facilitated this process.  Johansson (1975) wrote “The eye tends to assume spatial invariance, or invariance of form, in conjunction with motion rather than variance of form without motion”.  The results of this experiment provide the limit to Johansson’s principle when shapes are deforming.

To show quantitatively that observers’ rotation perception could not be explained by combining the shortest/slowest local motions, we implemented a nearest neighbor model based on closest spatiotemporal correspondence.  Each dot on frame i was matched to the nearest dot on frame i + 1.  On each trial, a tally was kept of the number of clockwise, counter-clockwise, and same spoke matches.  The trial was classified as clockwise or counterclockwise if the majority of matches were in that direction.  For the same stimuli as used in Experiment 1, the predicted percent of correct classifications is plotted against dynamic jitter in Figure 3E, showing that this model could not detect the correct direction of rotation because its input was dominated by same spoke motions.
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Figure 3. (A-C) Results from Exp 1 averaged over 6 observers.  (D) Results from Exp 2.  (E) Predictions from nearest neighbor model for Exp 1. (F) Predictions from nearest rotational neighbor model for Exp 2. (G) Predictions from global rotation model for Exp 1. (H) Predictions from global rotation model for Exp 2.


There remain three plausible explanations for the experimental results.  First, since observers are instructed to report only the direction of rotation, it is possible that they were able to ignore the radial excursions by attending only to motions from one spoke to another, and the global percept is created from the shorter/slower of the local rotary motions.  Second, activation of a neural template for rotary motion, e.g. MST neurons selective for direction of rotation (Duffy and Wurtz, 1991) supersedes other motion percepts.  Third, the observer matches shapes across consecutive frames and infers rotation direction from the best match.  We test these possibilities in subsequent experiments and models.

Experiment 2: Strongest Local Motions vs. Global Rotation
The attention-based explanation would be consistent with the finding by Chen et al (2008) that task dependent spatial attention modulates neuronal firing rate in striate cortex, and that response enhancement and suppression are mediated by distinct populations of neurons that differ in direction selectivity. We tested this explanation by using stimuli missing the same-spoke excursions, but where the shortest/slowest local motions were in the opposite direction from the shape’s rotation.  In Experiment 2, each rotation was equal to 80% of the angle ( between dots (Figure 4).  The shortest/slowest local motions were all individually consistent with rotation but conflicting with the globally consistent rotation.
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Figure 4. The correspondence conflict between successive stimulus frames in Experiment 2.  Orange lines signify the shape on frame t. Green lines signify the shape on frame t+1.  For most dots, the shortest local path is in the direction opposite to the global rotation.

Experimental methods were identical to Experiment 1, except that the magnitude of each rotation was 80% of the distance between spokes, i.e. 14.4º. Only one presentation speed (5.5 Hz) was used.   Data were collected for author EC and 3 experienced observers.

The average results are plotted in Figure 3D to allow comparison with the 5.5 Hz results from Experiment 1.  The manipulation of rotation percentage made little difference to observers’ accuracy in reporting rotation direction.  Informal reports from observers revealed they were generally unaware of the shorter local correspondence created by partial rotation.  These results argue against a combination of shortest/slowest local motions as a basis for rotation perception.  If attention is involved, it may be captured by the dots moving coherently in one direction (Driver and Baylis, 1989).

To provide quantitative support for this assertion, we implemented a nearest rotational neighbor model which was identical to the first model, except that radial (same spoke) motions were ignored and dots were matched according to the shortest/slowest rotary motions.  As would be expected, this model did better for the large amplitude shapes in Experiment 1.  However, it did not predict observers’ accuracy for the low amplitude shapes, and failed completely on the critical test provided by Experiment 2 (Figure 3F).
Optimal global model for shape-driven rotation

Two classes of neural processes could register global rotation, processes that differentiate between forms of movement, and processes that differentiate between movements of forms.  The first class could be MST-like rotation-templates that can signal the correct direction even if the center of rotation does not coincide with the center of the receptive field (Zhang, Sereno, and Sereno, 1993).  The second class could consist of Procrustes-like processes that match shapes by discounting rotation, translation and scaling (Mardia and Dryden 1989).  In both cases the modeling issues are similar: how is the error estimated across each pair of frames, what function of this computed error is used to decide the direction, how are errors accumulated across frames in a trial, and how is the direction decision made for each trial.  Probability theory (Jaynes, 2003) provides optimal rules for all of these issues.  In fact, at the computational level, these rules allow us to design the same optimal global rotation model for the two distinct neural processes.


A rotating rigid shape provides a perfect fit to a rotation template, and also a perfect shape match after rotation.  Any error in the shape match due to dynamic jitter will be proportional to the motion deviation from a perfect rotation template; hence we can use the same error metric for both processes.  A number of error metrics have been devised for shape mismatches, but for the stimuli in this study, a sufficient metric is to sum the squared distances between corresponding dots, possibly after allowing for rotation, translation and scaling.  If 
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 after accounting for a counter-clockwise rotation.

The optimal method to evaluate the plausibility ratio of the two alternative rotation directions given a particular transition is by using Bayes’ theorem to relate the probability of the direction given the transition, to the likelihood that the transition occurred as a result of some rotation angle in that direction, and the prior probability of that direction (MacKay, 2002):
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Where
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 are the prior probabilities for clockwise and counterclockwise rotation (based on the experimental design, priors were set equal to 0.5). The likelihoods for stimulus transition
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Assuming that judgments on each transition were independent of other transitions, the plausibility ratio for each trial was taken as the product of the ratios calculated for all transitions in that trial. The outcome of the trial was taken as clockwise if the trial ratio was larger than 1.0 and as counter-clockwise otherwise.

Finally, the total numbers of correct rotation decisions were tallied to get an accuracy proportion over all trails belonging to each condition.  These estimates are plotted for the stimuli of Experiment 1 and 2 in Figures 3G and 3F respectively.  The global rotation model does as well as the human observers in both experiments, suggesting that the visual system could either use a rotation template or match shapes across rotations to accomplish the task.  Note that the optimal model also performs with greater accuracy for the larger shape amplitude, reflecting the easier distinctions between cc and cw shape matches as shapes depart more from the generating circle.
Experiment 3: Shape Axis Motion

The next challenge was to devise an experiment in which rotation direction could be determined from an abstracted shape property in conditions where shape matches and rotation templates are insufficient. We sought a salient shape attribute that could retain spatiotemporal continuity without having features that are correlated across frames.  Shape axes have been considered central defining features of shape representation (Marr and Nishihara, 1978), and this may be particularly true for axes of bilateral symmetry (Wilson and Wilkinson. 2002).  We presented essentially unique symmetric shapes on each frame, so that dot based correlations were absent between successive frames, but the orientations of the symmetry axes rotated consistently in one direction.  Thus only an extracted symmetry axis could provide a cue to rotation direction.
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Figure 5: Displays four representative trials in the symmetric shape/symmetric jitter condition from Experiment 3 at four different dynamic jitter levels. Trials with high dynamic jitter appear to display a unique shape on each frame while presenting a unidirectional rotation.


Stimuli were varied for symmetry in two ways.  Base shapes were generated from circles to be either symmetric or asymmetric, and dynamic jitter was also either symmetric or asymmetric.  Trials with symmetric base shapes and high levels of symmetric dynamic jitter consisted of a series of distinct symmetric shapes with a continuously turning axis (Figure 5).  All stimulus parameters from Experiment 1 were repeated across 2 base shapes x 2 frame variations. 
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Figure 6: (A-C & E-G) Results from Experiment 3 for symmetric and asymmetric random shapes. (D&H) Accuracy estimates from the global rotation model for the two shape amplitudes.  


Performance accuracy in Experiment 3 as a function of dynamic jitter is plotted in Figure 6 A-C & E-G for two shape amplitudes and three presentation rates. With low levels of dynamic jitter, rotations of symmetric and asymmetric shapes were detected equally.  With increasing dynamic jitter, the symmetric dynamic jitter results form U-shaped functions.  As dynamic jitter magnitude increased, making each sequential shape more unique from its temporal neighbors, symmetric motions remained detectable for the two slower presentation rates. Observers perceived the stimulus as rotating, despite lack of correspondence between local elements, at magnitudes of dynamic jitter that made it impossible for subjects to detect asymmetric global motion at any presentation rate.  There was a significant main effect for symmetric versus asymmetric jitter (F(1,5) = 130.5, p<.001) and an interaction between jitter symmetry and jitter amplitude (F(5,5) = 33.6, p<.001.).  As shown in Figures 6 D&H, the global rotation model demonstrated no significant difference between symmetric and asymmetric stimuli from Experiment 3.  This demonstrates that observers’ performances on symmetric shapes were not due to dot-based shape or motion correlations.  Comparison of human and model performances shows that observers were capable of outdoing the optimal global model by extracting relevant shape attributes that are invisible to shape matching and rotation templates.  The decrease in accuracy for symmetric stimuli at higher presentation rates may be due to the time demands of symmetry detection.

Experiment 4: Symmetry extraction durations
Experiment 4 was designed to measure duration thresholds for perceiving the rotation of symmetric shapes.  Observers were presented with rotations of either rigid asymmetric shapes or symmetric shapes with large magnitudes of symmetric dynamic jitter, at nine presentation rates ranging from 1.5 to 93.0 Hz.  Figure 7 shows the 75% presentation rate thresholds estimated from psychometric functions for accuracy (Wichman and Hill, 2001). Observer performance for rigid motion trials was above threshold for all presentation rates.  Average threshold for detecting symmetry-axis rotation was 7.9 Hz (SE=1.6) for shape amplitude  = 40, and 3.1 Hz (SE=0.41) for  = 20.  Symmetry perception is possible in intervals as short as 50 ms under ideal conditions (Julesz, 1971), but can take considerably longer for complex stimuli (Cohen and Zaidi, 2007b) and non-vertical orientations (Barlow and Reeves, 1979).  The presentation rate threshold for the larger (, translates into a frame duration threshold of 125 msec.  This result suggests that observers need presentation durations compatible with symmetry extraction to detect rotation of the symmetry-axis.
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Figure 7: Results from Experiment 4.  Red arrows indicate that performance for rigid motion stimuli was above threshold at all presented rates.

Model and human efficiency

In some perceptual domains, psychophysical results can be explained quantitatively in terms of neural properties (e.g. Cohen and Zaidi, 2007a). However, given the paucity of information about neurons that code complex motions (Duffy and Wurtz, 1991, 1995; Oram and Perrett, 1996) and complex forms (Gallant, Braun, and Van Essen, 1993; Pasupathy and Connor, 1999; Tanaka et al., 1991; Tanaka, 1996), it is not feasible to build a quantitative model that predicts rotation direction from the responses of realistic neurons.  As a computational level alternative (Marr, 1982), we built a statistical model for optimal decoding of rotations from the actual stimuli used in the experiments.  A number of decisions were made in designing this model, so we have tested the optimality of these decisions.  To confront the model with the same problems as the human observers, calculating the shape error required the model to estimate the center and angle of rotation from the frame data.  In particular, the centroid of each frame was taken as the center of rotation, creating some variability with respect to the true center.  We examined whether performance would improve if we provided the shape-matching algorithm with the true center of rotation or if the center of rotation was computed as a running average of centroids for all the frames. The improvement in both cases was barely discernible.  Similarly, using exact errors, directly from the stimulus generation routine, to calculate likelihoods, led to only a slight improvement in performance.  This was probably because the shape matching routine is quite accurate, as reflected by the fact that the distribution of errors computed by the model was very similar to the distribution of errors computed from the shape generation routine. For experimentally set 
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It is worth noting that the model’s performance degraded when the prior for each transition in the simulation was updated based on the outcome of the preceding transition, instead of the priors for clockwise and counter-clockwise rotation being set at 0.5.
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Figure 8: 75% accuracy thresholds for human performance at three presentation rates in Experiment 1, compared with the performance of the optimal global rotation model using subsets of dots, or equivalently % of available information Error bars for the model simulations are standard errors calculated from 6 independent sets of stimuli, each containing the same number of trials as the psychophysical experiments.  

Since human and model accuracies decrease monotonically with dynamic jitter (Figure 3), and the task used a two-alternate forced choice, we summarized the performance curves by an accuracy threshold equal to the amount of noise at the 75% accuracy level. Unlike usual thresholds, in this case a higher accuracy threshold implies that the observer can tolerate more noise and hence performs better. The horizontal lines in Figure 8 show accuracy thresholds for human performance at three speeds, for the higher shape amplitude in Experiment 1, where the shapes were more distinct.  We simulated the thresholds of the optimal global rotation model for the stimuli of Experiment 1, but instead of considering the whole shape, we considered only 1, 2, …or 20 consecutive dots, chosen randomly for each frame transition.  The labels on the top of Figure 8 convert numbers of dots considered, to percentage of available information used, which we will use as a measure of equivalent efficiency for human observers.  At the slowest speed we tested, human observers performed almost as well as the model that used 18 points, i.e. at 90% of the efficiency of the optimal decoder.   This implies that the human visual system includes near optimal processes for matching deforming shapes and/or for detecting rotation in the presence of strong distracting motions.  The equivalent efficiency of human observers declined at the faster presentation rates.  The equivalent linear speeds at these presentation rates were 3.8 and 8.6 dva/s.  Since motion energy is extracted well at these speeds (Lu and Sperling, 1995; Zaidi and DeBonet, 2000), the comparison in Figure 8 suggests that the limitation at higher speeds may be the number of dots that can be used in shape or motion computations.

Discussion

The results of this study have a number of implications for understanding object motion perception.  The results of Experiments 1 and 2 show that human observers are almost as efficient at detecting the rotation of arbitrarily deforming objects as the optimal statistical decoder. Despite competition from stronger local motion signals, global rotation is discriminated easily and accurately in the presence of even high levels of positional noise.  The random jitter in this method may be seen as reflecting a worst-case scenario for motion of deforming objects.  In real world deformations such as those listed at the beginning of this paper, local motions will be more systematic and there will be higher shape correlations across successive frames. Human observers may thus be expected to do better than a shape-matching model for most natural deformations, especially those that present extra information like elongations. 


The results of Experiments 3 and 4 show that observers can use symmetry axes to infer motion direction, even when form or motion information from the contour is uninformative.  Stable appearance descriptors can be a tremendous aid in the critical task of object recognition.  For example, shape is the geometric descriptor that is invariant to translation, rotation and scaling (Kendall et al., 1999).  It has been suggested that by detecting and encoding an object’s shape structure, the visual system may form a robust object representation that is stable across changes in viewing conditions and efficiently characterizes spatially distributed information (Biederman, 1987; Hoffman and Richards, 1984; Marr and Nishihara, 1978).  Some retinal projections of 3-D objects, however, introduce shape distortions that the visual system is unable to discount (Griffiths and Zaidi, 1998, 2000).  In addition, many objects are articulated, plastic, or elastic, so a rigid shape description is insufficient.  In such cases, invariant shape properties like symmetry may aid in recreation and recognition of volumetric shapes from images (Pizlo, 2008). In fact, bilateral symmetry is widespread in natural and man-made objects (Tyler, 1996), and axes based on local symmetry have been found to be useful in representing shapes (Blum, 1973; Marr and Nishihara, 1978; Leyton, 1992, Feldman and Singh, 2006).  Our results show that identifying the path of a moving object, where disparate and spatially distributed local motion signals need to be combined (Ullman, 1979; Hildreth, 1984; Yuille and Gryzwac, 1988) is a challenge in which the visual system may benefit from representation of object structures such as axes of symmetry.  Symmetry was chosen as the property examined in these studies due to its separability from local contour properties, but it is possible that other shape properties related to the contour may also benefit motion processing. 


The motivation for this study was to identify the influence of form processing on the perception of object motion.  The results of this study identify a number of such influences.  First, the selection of local motion information for combination into a global percept depends not on the relative strengths of local directional signals, but on the most plausible/coherent global motion. This global percept may be a result of the activation of a rotation template over-riding an incoherent percept formed by the strongest local motion signals, or it may result from a process that infers the direction of motion as that which gives the strongest correlation across frames. The latter generalizes the basic idea behind Reichardt’s (1961) detector, to complex object motion.  The correlation principle also applies to the simpler case of object translation, because under the assumption that the two components of a plaid will move as one object, the intersection-of-constraints principle will maximize frame-to-frame correlations after accounting for translation.  Second, the shapes we used in the first two experiments had no inherent orientation, so the inference of rotation from one frame to the other could not have been based on any intrinsic quality of the shapes but solely on the post-rotation point-wise correlation.  Third, for these arbitrary shapes, the high-efficiency of human motion perception could be due to either just motion or just shape information.  The above threshold accuracy for motion detection of the high dynamic-jitter symmetric shapes, however, can not be based on any combination of local motion signals, or on correlating contours of the shape, so it must be based on shape representations that explicitly label the extracted symmetry axes.  It is highly improbable that the symmetry axis is revealed by motion signals, despite the fact that in unrelated domains, form perception can be a result of motion processing (Nishida, 2004; Regan and Beverley, 1984).  A general model for the perception of object motion should thus include representation processes that highlight shape attributes.
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